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Antarctic humpback whales are recovering from near
extirpation from commercial whaling. To understand the
dynamics of this recovery and establish a baseline to monitor
impacts of a rapidly changing environment, we investigated
sex ratios and pregnancy rates of females within the Western
Antarctic Peninsula (WAP) feeding population. DNA profiling
of 577 tissue samples (2010–2016) identified 239 males and
268 females. Blubber progesterone levels indicated 63.5% of
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the females biopsied were pregnant. This proportion varied significantly across years, from 36% in
2010 to 86% in 2014. A comparison of samples collected in summer versus fall showed significant
increases in the proportion of females present (50% to 59%) and pregnant (59% to 72%), consistent
with demographic variation in migratory timing. We also found evidence of annual reproduction
among females; 54.5% of females accompanied by a calf were pregnant. These high pregnancy
rates are consistent with a population recovering from past exploitation, but appear inconsistent
with recent estimates of WAP humpback population growth. Thus, our results will help to better
understand population growth potential and set a current baseline from which to determine the
impact of climate change and variability on fecundity and reproductive rates.

1. Introduction
As populations of baleen whales recover from past over-exploitation they are re-occupying ecological
roles, particularly on their high latitude feeding grounds from which they may have been functionally
absent for many decades. For example, in many areas of the Southern Ocean populations of humpback
whales (Megaptera novaeangliae) are recolonizing feeding grounds in the Antarctic and sub-Antarctic [1,2].
In some of these areas, whales are encountering environmental conditions very different from those
that existed prior to their exploitation. One of these areas, the Western Antarctic Peninsula (WAP), is
experiencing some of the fastest rates of regional climate change on Earth. This region has experienced
a rise in temperature of nearly 7°C since the 1950s, resulting in the collapse of ice shelves, the retreat of
glaciers and the exposure of new terrestrial habitats [3–5]. A decline in seasonal sea ice has been observed
along the WAP, resulting in an annual occurrence of sea ice (greater than 15% cover) that is, on average,
80 days shorter than it was four decades ago [5]. This warming is proceeding with a variety of impacts on
the ecology of the system [5,6], including regime shifts among sympatric krill predators along the WAP,
such as declines in the abundance of Adélie penguins and their replacement by sub-Antarctic gentoo
penguins [5].

Like most mysticetes, humpback whales exhibit an annual migration from low-latitude breeding
grounds to high-latitude feeding grounds where they exploit high levels of seasonal productivity [7].
The timing of this migration varies as a function of age, sex and reproductive state [8]. During the austral
summer and fall, humpback whales feed throughout the Southern Ocean. For management purposes, the
International Whaling Commission (IWC) divides this distribution into six feeding areas and includes the
WAP within Area I [1,9,10]. The WAP is an important feeding ground for humpback whales (breeding
stock G) that winter along the west coast of South and Central America (e.g. Ecuador, Colombia and
Panama) and perhaps other populations as well [9,11]. The timing of migration, and therefore the
duration of feeding during the austral summer and fall is critical to fuelling the migration of whales to
their low latitude breeding grounds [7]. Energetic studies of blue and fin whales have shown that roughly
25% of their annual lipid reserves are used over the course of the annual migration [12]. These energetic
demands are even greater for pregnant or lactating whales. Lockyer [12] suggested that lactation and
pregnancy will consume roughly 19% of total energy stores in mature female fin whales.

Little is known about the exact timing of migratory movements and residency times of different age
and sex classes of humpback whales along the WAP. Our lack of knowledge stems largely from the
rapid depletion of humpbacks at the very beginning of Antarctic whaling during the first part of the
last century [13], as well as the significant logistical challenges associated with studying whales in polar
regions. During this period of whaling, humpback populations were a favoured target because they were
relatively easy to catch, abundant in protected bays, and floated when killed [14]. The rapid depletion
of these stocks has been well documented [13]. For example, humpbacks comprised the majority of the
catch at South Georgia from 1904 to 1910, but by the 1913–14 season this species comprised less than
20% of the whales taken [15]. The same story of unconstrained over-exploitation was repeated in the
South Shetlands and along the WAP [14]. As a result, there was little opportunity to study the ecology
of humpback whales before they were reduced to remnant populations. An improved understanding of
the demography and seasonal patterns of movements of humpback whales in this area would help place
current research on their regional density and population dynamics into a broader ecological context.

Identification of the sex of individuals facilitates the study of population structure, behaviour,
breeding patterns and social systems [16]. As both iconic animals and top predators, understanding
such knowledge about humpback whales allows us to better understand how individuals interact and
organize themselves within their environment, as well as provide insight as to the health, structure, and
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function of the marine ecosystem of which they are a part. Insights into the timing of migration for
various age and sex classes are available from other populations of humpback whales (east and west
Australia) in the Southern Ocean that were exploited later than those along the WAP [17]. In these areas,
pregnant female humpback whales were the first to arrive on the feeding grounds, followed by immature
animals, resting females and mature males, and lastly, lactating females and their young calves [7]. These
observations were generated during the height of commercial whaling, and there have been no attempts
to assess these patterns along the WAP until now.

Estimates of pregnancy are important for assessing density dependent effects predicted for
populations as they recover and approach pre-exploitation or presumed carrying capacity [18].
Historically, assessment of the reproductive status of cetaceans was obtained from examination of
carcasses taken in commercial hunts [19,20]. Since the protection of humpback whales by the IWC in
1966 this source of information has become unavailable for this species [19].

Since protection from hunting, reproductive rates have been estimated for some populations of
humpback whales from crude birth rates (% of calves) [21] or by estimating calving rates derived
from long-term sighting histories of individual mature females [22–25]. In this approach, estimates of
reproductive rates were generated through repeated observations of adult females with and without
calves. This approach provides an estimate of the number of recruits entering a population but,
without correction, inherently underestimates true fecundity rate, because it does not account for fetal
and perinatal mortality. Rates of fetal and perinatal mortality can vary and are potentially important
indicators of population health [26].

More recently, biochemical techniques have been developed to detect pregnancy using non-lethal
sampling and in some cases making it possible to estimate reproductive rates prior to parturition. For
example, pregnancy status has been determined by assessing the concentrations of progesterone in
the milk of lactating bottlenose dolphins [27], sex steroids secreted in the urine of killer whales [28],
salivary steroids in Hawaiian monk seals [29], blood plasma, salivary, ocular, and vaginal secretions of
false killer whales [30], and ultrasound evaluations of dolphins examined during capture–release health
assessments [31]. However, such methods are not practical for use with large whales, which cannot be
captured or handled. The measurement of progesterone in samples that can be collected in the field,
such as faecal material [32], blow [33,34] and skin biopsies [19,20,35] offer a pragmatic alternative for
these animals.

Progesterone, often referred to as the hormone of pregnancy, is a lipophilic circulatory steroid
hormone produced by the corpus luteum, and is the primary regulator of oestrous cycling and pregnancy
[36]. Progesterone’s lipophilic properties make biopsy samples of skin and blubber a readily obtainable,
non-lethal, analytical matrix for assigning pregnancy in free-swimming cetaceans. This work was
pioneered in a large-scale study of short-beaked common dolphin (Delphinus delphis), northern right-
whale dolphin (Lissodelphis borealis) and Pacific white-sided dolphins (Lagenorhynchus obliquidens) killed
incidentally in the California gill net fishery [20]. The pregnancy status of these female dolphins was
determined by physical examination of the carcass, by noting number of corpora, corpus luteum size
and/or length of the fetus (if present) [20]. The authors then validated blubber sample endocrine
techniques by corroborating their progesterone values with the known reproductive state of the carcass;
elevated progesterone concentrations were correlated with pregnant females.

The development of non-lethal tissue sampling techniques [37], and the methods to assess hormone
levels from skin–blubber biopsy samples, now provides the capacity to assess demographic rates in wild
cetacean populations [19,20,35]. The objective of our study was to assess variation in the sex ratios and
pregnancy rates of humpback whales along the WAP, and in doing so, develop a baseline with which to
assess the impact of climate change and variability, that affect both available habitat and prey.

2. Methods
2.1. Biopsy collection
We collected skin and blubber samples from humpback whales during the 2010 and 2013–16 austral
summer and fall (January–June) field seasons along the WAP using standard biopsy techniques [37].
Samples were collected whenever whales were encountered during prey or visual surveys in an area
within approximately 10 nautical miles of Palmer Station, Anvers Island. We also collected samples
during the Palmer Long Term Ecological Research (LTER) research cruise in January and February of
each year (figure 1). Samples were collected unselectively from all age/sex classes, except young of the
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Figure 1. Genetic sex of humpback whales sampled along the Western Antarctic Peninsula (a) and in the Gerlache Strait and adjacent
bays (b) and pregnancy status of female humpback whales sampled along theWestern Antarctic Peninsula (c) and in the Gerlache Strait
and adjacent bays (d) during the 2010, 2013–16 field seasons.

year calves, which were excluded. Calves of the year were assumed to have been born the previous
breeding season as evident by their small size (less than half of the presumed mother’s length) and close
association with an adult, presumed to be the mother. Samples were collected using a crossbow with
modified bolts and 40 mm tips (CetaDart) from a small vessel at distances of 10–30 m targeting the dorsal
and lateral body surfaces near the dorsal fin [37]. Samples were stored frozen whole at −20°C until used
for analysis.

2.2. DNA profiling
A standard DNA profile, including microsatellite genotypes and sex-specific markers, was used to
identify individuals [38]. Total genomic DNA was extracted from the skin–blubber interface using
a proteinase K digestion followed by a standard phenol–chloroform extraction [39]. The sex of each
sampled whale was identified by amplification of sex-specific markers following the protocol of Gilson
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Table 1. Megaptera novaeangliae. Summary of microsatellite loci used for individual identification of humpback whales along the WAP.
The number of alleles, observed (HO) and expected (HE) heterozygosity, and deviation fromHardy–Weinberg equilibriumwere calculated
using Cervus 3.0.1. The expected probability of identity (PID) of each locus was calculated with the program GenAlEx v6.5.

locus source label [mgCl2] mM size range (bp) no. of alleles HE HO PID
Ev14 Valsecchi & Amos [41] VIC 2.5 125–143 9 0.787 0.748 0.074

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Ev37 Valsecchi & Amos [41] NED 3.5 192–228 18 0.898 0.891 0.019
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Ev96 Valsecchi & Amos [41] FAM 1.5 141–173 15 0.869 0.862 0.030
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

GATA417 Palsbøll et al. [42] FAM 2.5 143–199 21 0.912 0.891 0.37
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

GATA28 Palsbøll et al. [42] NED 2.5 187–282 14 0.404 0.402 0.015
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

GT211 Palsbøll et al. [42] FAM 2.5 100–120 10 0.82 0.82 0.056
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

GT23 Berube et al. [43] VIC 2.5 101–123 9 0.749 0.712 0.1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

GT575 Berube et al. [43] FAM 1.5 137–177 14 0.804 0.787 0.061
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

rw4–10 Waldick et al. [44] VIC 2.5 190–216 14 0.845 0.824 0.043
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

rw48 Waldick et al. [44] NED 3 112–120 5 0.724 0.742 0.12
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

et al. [40]. We compared results to controls for a known male and female using gel electrophoresis. Sex
ratios, depicted as the ratio of males to females (M : F), were calculated for the entire dataset, within years,
and across seasons. Each sample was also genotyped using 10 previously published microsatellite loci
to determine individual identity and remove potential replicate samples (table 1) [41–45]. Alleles were
sized and binned using the software program Genemapper v3.7 (Applied Biosystems). The total number
of amplified loci for a given sample was considered as an added quality control threshold. Given the
estimated probability of identity for these loci from previous studies [46], we considered that 7 loci were
sufficient for individual identification. Samples with fewer than 7 microsatellite loci were re-analysed
or excluded. The expected probability of identity (PID; the probability that two individuals drawn at
random from a population will have the same genotype by chance) for each locus was calculated in
GenAlEx v6.5 [47]. Cervus 3.0.7 [48] was used to compute the number of alleles (K), observed and
expected heterozygosity (HO and HE), deviation from Hardy–Weinberg equilibrium with a Bonferroni
correction, and the probability of identity for all individual matches.

2.3. Hormone extraction and quantification
Hormone extraction followed standard methods [20,35]. In brief, a cross-sectional sub-sample (approx.
0.15 g) spanning from the epidermis–blubber interface to the most internal layer of the biopsy was sub-
sectioned from female whales. These sub-samples were homogenized separately in 1400 µl of ethanol
using an automated, multi-tube homogenizer (Bead Ruptor 12, Omni International). The resulting
homogenates were then rinsed with a series of ethanol, 4 : 1 ethanol : acetone, and ethylether washes.
Following each rinse, the supernatant was collected. Lastly, the progesterone was separated from the
resulting lipid residue using a biphasic acetonitrile–hexane separation. The final hormone pellet was
dried down and stored at −20°C until analysis.

Progesterone concentrations were quantified using a progesterone enzyme immunoassay (EIA; Enzo
Life Sciences, kit ADI-900-011). Prior to analysis, samples were re-suspended in 1 ml of phosphate
buffered saline (pH 7.5) containing 1% bovine serum albumin and vortexed thoroughly. The progesterone
EIA kit used in this study has 100% reactivity with progesterone and an assay detection limit between 15
and 500 pg ml−1 using the standard curve. Two additional standard dilutions were added to allow for a
lower detection limit of the standard curve to 3.81 pg ml−1. Samples were run blind and in duplicate.
If a sample failed to fall within the detection limit of the assay curve, the samples were re-run at
varying dilutions. The reported inter-assay coefficient of variation (COV) and intra-assay COV of the
progesterone EIA were in the ranges 2.7–8.3% and 4.9–7.6% respectively. Progesterone concentrations
are reported as nanograms of progesterone per gram of blubber (ng g–1).

We determined extraction efficiency with every progesterone extraction using samples from a
dead, stranded animal of known pregnancy status by spiking subsamples of blubber with 150 ng of
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progesterone and including these with every extraction [20]. The percentage of progesterone recovered
after the extraction was calculated and each sample concentration was adjusted to this efficiency prior
to statistical analyses. An extraction efficiency greater than 60% was adequate and is based off the
reported range of efficiencies that are seen using these methods [20]. If the efficiency of an extraction
set was less than 60%, the sample extracts were discarded and the blubber samples were re-extracted
and re-analysed.

A series of serially diluted pooled samples from five humpback whale individuals from the WAP
were compared against the EIA kit progesterone standard to determine parallelism [49,50]. The series of
serially diluted pooled samples and kit standards were run in duplicate and an analysis of covariance
(ANCOVA) was used to determine if the slopes between the two lines were significantly different.

2.4. Pregnancy classification
Pregnancy was assigned using the methods developed by Pallin et al. [51]. Briefly, we used the
progesterone concentrations from a collection of female humpback whales of known pregnancy status,
based on annual calving observations, to develop a predictive model. We interpreted the pregnancy state
of females sampled along the WAP based on the relationship of their progesterone concentration with
the reference levels from known pregnant animals. The model returned the probability that each female
was pregnant [51]. If the probability of being pregnant was greater than 99.9%, that female was assumed
to be pregnant. If the probability of being pregnant was less than 0.1%, that female was classified as
not-pregnant. If a female’s probability of being pregnant was between those two bounds, she received
an undetermined pregnancy assignment. Lastly, after all probabilities were assigned, we determined the
probability of a sample being miss-classified.

2.5. Data preparation and statistical analyses
We used a two tailed exact binomial test [52] to test for deviations from a 1 : 1 sex ratio (parity) across the
entire dataset, within a given year, and within each season. We separated the austral seasons of summer
(January–March) and fall (March–June) using the autumnal equinox on 19 March. Additionally, to avoid
re-sample bias in our analyses, we removed all within-year replicates from the inter-annual comparisons;
we also removed within season replicates from the same year from the seasonal analyses. In both cases,
the most recent sample was retained for the analyses.

We tested for differences in the sex ratios and pregnancy rates across all years and across both seasons
by using a χ2 test of independence. Additionally, we used a Tukey post hoc stepwise multiple comparison
test to determine if there was a significant difference in pregnancy rates between any two individual
years. For all statistical tests, we considered a p-value of less than 0.05 to be significant. All values are
expressed as mean ± s.d., unless otherwise stated.

3. Results
3.1. Individual identification and sex
We collected 583 biopsy samples from the waters around the WAP over the course of five field seasons
from 2010 to 2016 (figure 1). On average, 9.8 loci were successfully genotyped per individual. The average
PID for any given combination of 7 loci ranged from 4.29 × 10–11 to 4.83 × 10–8, consistent with previous
studies. Two samples failed the initial genotype quality control and were re-analysed. Consequently, we
considered samples with matching genotypes to be recaptures of the same individual. The DNA profiling
was sufficient to identify and determine sex of 507 individual whales from these samples (table 2). In
total, we sampled 239 individual males and 268 individual females over the course of the study. Details
on annual sampling can be found in table 2. We resampled 54 individuals within the same year (table 3).
Three of these individuals were sampled three times (two in 2014, one in 2016) and one individual was
sampled four times in 2016. Additionally, we recaptured 11 individuals between years (table 3).

3.2. Annual and seasonal variation in sex ratios
Overall, we sampled more females than males (0.89 M : F), but this deviation from parity was not
significant (p = 0.213, exact binomial test; table 2). Nor did the sex ratio differ significantly from unity
in any given year (table 2) and we observed no difference in the sex ratio across all years (χ2 = 7.256,
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Table 3. Within- and between-year genotype recaptures of humpbackwhales sampled along theWAP. Recaptures within the same year
are presented as male/female. Blue shaded cells indicated male recaptures and pink shaded cells indicate female recaptures.

year n 2010 2013 2014 2015 2016

2010 27 2/0 1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2013 86 3/4 1 1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2014 136 16/5 1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2015 128 2 1 4/0 1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2016 200 1 1 1 7/18
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 4. Progesterone concentrations (ng g−1) of humpback whales biopsied along the WAP with a pregnancy assignment. Values in ()
denote the exclusion of within year replicates.

mean (ng g–1) s.d. min max N

not pregnant 2.06 (2.10) 1.12 (1.13) 0.20 4.86 98 (89)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

pregnant 254.65 (249.96) 293.94 (281.79) 19.28 1940.52 166 (155)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

undetermined 11.81 1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

total 264 (244)a
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

aTotal does not include undetermined individual.

d.f. = 4, p = 0.123; table 2). The sex ratio in summer was very close to parity, 1.01 M : F (182 males, 180
females; exact binomial test, p = 0.960). We did, however, observe a significant skew in favour of females
in the fall, 0.68 M : F (65 males, 95 females; exact binomial test, p = 0.020). This difference in the sex ratio
across seasons was significant (χ2 = 4.146, d.f. = 1, p = 0.042).

3.3. Validation of humpback progesterone assays
Based on the concentrations observed from the series of spiked controls, our average extraction efficiency
was 73.78% ± 0.09 (minimum 61.1%, maximum 95.6%). Additionally, our calculated inter-assay and
intra-assay COV from a series of replicated samples was 6.37 and 7.75% respectively. The results from
our assay parallelism test between the kit progesterone standard and humpback whale progesterone
showed strong parallelism, indicating that the use of the progesterone assay to detect humpback whale
progesterone is viable. This result was consistent with previous studies on humpback whales [53].
Specifically, the slopes of the two linear curves were not significantly different (p = 0.848; see electronic
supplementary material, figure S1).

3.4. Pregnancy assignment
We measured progesterone concentrations in 264 samples obtained from 244 individual female
humpback whales (figure 1). A small number of samples were excluded from the analysis due to
within year re-sampling or insufficient blubber for an extraction. Based on the relationship of their
progesterone concentration with the reference levels from known pregnant animals, 89 individuals were
assigned as not pregnant (p < 0.1% pregnant; blubber progesterone: mean = 2.10 ± 1.13 ng g–1; table 4)
and 155 were assigned as pregnant (p > 99.9%; blubber progesterone: mean = 249.96 ± 281.79 ng g–1;
table 4). Only a single individual had a probability of pregnancy between 0.1% and 99.9% (blubber
progesterone: 11.81 ng g–1, probability of pregnancy 0.67%, CI 0.00% to 99.8%; table 4). Out of the 266
samples analysed for progesterone, we estimate that probability of a sample being miss-classified was
3.2 × 10−6 (8.6 × 10−4/266; CI 4.06 × 10−7 to 1.05 × 10−5). The within-year replicate samples provided
further validation of the assay by demonstrating that re-sampled females continued to fall within
the same pregnancy designation. Specifically, 18 of the 19 resampled females showed agreement with
pregnancy assignments among all re-samples (mean difference, pregnant = 202.1 ± 394.86 ng g–1, not
pregnant = 1.45 ± 1.29 ng g–1). The one inconsistency occurred in an individual with three samples from
the upper flank below the dorsal fin and a sample from the fluke, which lacked a sufficient blubber layer.
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Figure 2. Logisticmodel used to assign the probability of pregnancy in humpbackwhales sampled along theWAP.Model was previously
described in Pallin et al. [51].

Table 5. Summary statistics of pregnancy assignments for female humpback whales sampled along theWAP (2010, 2013–16). Numbers
inside () designate when all replicates have been removed from the sample dataset.

not-pregnant 95% CL pregnant 95% CL

temporal scale no. females no. individuals N % lower–upper N % lower–upper

2010 fall 11 11 7 63.64 30.79–89.07 4 36.36 10.93–69.21
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2010 total 11 11 7 63.64 30.79–89.07 4 36.36 10.93–69.21
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2013 summer 35 33 18 54.55 36.35–71.89 15 45.45 28.11–63.65
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2013 total 35 33 18 54.55 36.35–71.89 15 45.45 28.11–63.65
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2014 summer 41 40 7 17.50 7.34–32.78 33 82.50 67.22–92.66
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2014 fall 11 11 0 0.00 0–28.49 11 100.00 71.51–100
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2014 total 52 51 7 13.73 5.7–26.26 44 86.27 73.74–94.3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2015 summer 48 48 23 47.92 33.29–62.81 25 52.08 37.19–66.71
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2015 fall 16 16 3 18.75 4.05–45.65 13 81.25 54.35–95.95
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2015 total 64 64 26 40.63 28.51–53.63 38 59.38 46.37–71.49
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2016 summer 44 39 18 46.15 30.09–62.82 21 53.85 37.18–69.91
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2016 fall 58 48 14 29.17 16.95–44.06 34 70.83 55.94–83.05
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2016 total 102 87 (85) 32 (31)a 36.47 26.29–47.62 55 (54)a 63.53 52.38–73.71
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

total 264 246 (244) 90 (89) 36.48 30.43–42.86 156 (155) 63.52 57.14–69.57
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

aDenotes where an individual(s) was recaptured across seasons.

This sample was not included in any subsequent analyses (table 5). The progesterone concentrations
across the two assigned pregnancy states for females sampled along the WAP were distributed in a
similar manner to the control samples from the Gulf of Maine described in Pallin et al. [51] (figure 2).

3.5. Annual and seasonal variation in pregnancy rates
The mean pregnancy rate for all females across all five years was 63.5%, regardless of the presence of
a calf. We observed significant variation in pregnancy rates across years (χ2 = 20.02, d.f. = 4, p = 0.001;
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Figure 3. Inter-annual variation in the proportion of assigned pregnant and not pregnant (pregnancy rate) female humpback whales
sampled along the WAP based on progesterone concentrations. The overall mean pregnancy rate across all years was 63.5%.
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sampled along the WAP based on progesterone concentrations.

figure 3). A post hoc multiple comparisons analysis revealed that the pregnancy rate in 2014 was
significantly higher than in all other years (2010 p = 0.013, 2013 p = 0.001, 2015 p = 0.02, 2016 p = 0.049).
Females sampled in the fall had a pregnancy rate of 72.09%, significantly greater (χ2 = 4.53, d.f. = 1,
p = 0.001) than that of females sampled in the summer (58.75%; figure 4).

3.6. Evidence of annual pregnancy
Of the total of 244 individual females analysed for progesterone, 44 were accompanied by a calf of the
year (2010 n = 1, 2013 n = 4, 2014 n = 10, 2015 n = 17, 2016 n = 12), as verified from field observations. Of
these 44, 24 (54.5%; 2010 n = 1, 2013 n = 1, 2014 n = 9, 2015 n = 7, 2016 n = 6) were pregnant when they
were biopsied, indicating the occurrence of annual pregnancy within this population. We also sampled
one female in 2015 (Mn15_068H) and 2016 (Mn16_034A-L), that was pregnant in both years.

4. Discussion
4.1. Variation in sex ratios
The sex ratio of the sampled population was close to unity (0.89 M : F), and we observed no significant
differences in sex ratios across years. Our analysis thus supports early observations, derived from
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catch data, that the sexes mix randomly on the feeding grounds in the Southern Ocean [7,17,54].
Chittleborough [17] reported that males comprised 52.8% of more than 18,000 humpback whales killed
in Antarctic Area IV (south of Australia and New Zealand) between 1949 and 1962. Additionally,
Matthews [54] reported that 45.4% of the 1057 whales killed at South Georgia were male. Similarly
unbiased sex ratios have also been reported from feeding grounds of the North Atlantic [55] and North
Pacific [45].

However, we observed a significant bias towards females as the feeding season progressed into
the austral fall. This result corroborates prior observations of the temporal segregation of humpback
migration in the Southern Hemisphere based on individual demographic status. Specifically, Dawbin
[7] reported that during the northbound migration lactating females were the first whales observed to
be migrating north to the breeding grounds near Cook Strait, New Zealand. These whales started their
migration about one month earlier than the first northbound catches, and were followed by immature
whales, mature males, resting females, and lastly, pregnant females [7], resulting in an increased
proportion of females on the feeding grounds into the fall.

4.2. Variation in pregnancy rates
We observed a pregnancy rate of 63.5% across all years. Interestingly, we also documented evidence of an
annual reproductive cycle in which postpartum ovulation and conception occurred in some females. The
pregnancy rate of females varied significantly among the 5 years of sampling, ranging from 36 to 86%.
This overall rate is higher than reports of the pregnancy rate of female humpbacks taken in Antarctic
whaling areas IV and V (mean = 48%) from 1950 to 1956 [53,56]. Our estimate of pregnancy rates is
also greater than expected from observed calving rates of 0.37–0.41 calves/year/mature female from
Northern Hemisphere populations of humpback whales [57,58], which are also recovering from past
exploitation [59–61], but these latter rates are not directly comparable to those presented here, because
they include the unknown effects of fetal and perinatal morality.

Calving rates are generated by observing females accompanied by calves that have survived long
enough to be observed. Absent sampling biases, the difference between this and pregnancy rates
should reflect the rates of fetal loss and perinatal mortality that occur between the dates of pregnancy
determination (in this case the biopsy date) and the dates of observations of mothers and calves. In
addition, our pregnancy metric reflects the proportion of females that are pregnant, irrespective of
maturity state. Typically, calving rates are reported as the fraction of mature females observed with a
calf. These distinctions are extremely important when drawing comparisons between our work and other
studies.

We observed the highest annual pregnancy rate (86%) in 2014. Similarly high rates of 72% and
82% were documented from catch data in Antarctic whaling areas IV and V from 1950 to 1956 and
the Bellingshausen Sea, just west of the WAP, in February of 1957 [56,62]. However, these estimates
may be positively biased, as lactating females accompanied by calves were protected by international
regulation during this period [56]. Over the course of six years of whaling in Antarctic areas IV and V,
pregnancy rates varied from 36% to 72%, similar to the variation we observed over the five years of our
study [56].

Observed pregnancy rates along the WAP increased from summer to fall. We believe that pregnant
females maximize time spent on the feeding grounds prior to migration. This interpretation is consistent
with the bias in favour of females that we observed into the fall, as well as the demographic segregation
of migration observed from northbound whales during the whaling era [7,17]. Specifically, there was
an increase in the proportion of pregnant females caught in late July and August off Cook Strait,
New Zealand [7]. Lockyer [12] suggested that baleen whales must increase their body mass up to
65% to maintain energetic costs for the next year, so pregnant females should stay as long as possible
on the feeding grounds to increase their lipid reserves. Lockyer [63] demonstrated that this delay
in migration allowed pregnant females to acquire an additional 10–15% of fat reserves than resting
females.

4.3. Evidence of annual pregnancy
The frequency of post-partum pregnancy and annual calving in humpback whales is poorly understood.
We sampled 44 mothers accompanied by calves over the course of our five field seasons, and more than
half of these lactating females were pregnant. Chittleborough [64] concluded that female humpback
whales are seasonally polyoestrous, with oestrus occurring on the breeding grounds from June to
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October [54]. There is a general lack of information on the termination of these cycles, but they are
believed to occur at conception or when the southward migration begins. Most cycles are characterized
by a single ovulation [17,65]. The total number of ovulations over a 2–3 year breeding cycle, however, still
remains unclear [66]. Chittleborough [66] documented post-partum ovulation by examining the carcasses
of female whales during the commercial whaling era. Specifically, of 19 lactating females he examined
at Western Australian whaling stations between 1949 and 1955, eight (42.1%) were both pregnant and
lactating [66]. This is similar to the proportion we observed (54.5%) among females sampled along the
WAP, almost 60 years later.

There are few other records of annual reproduction in humpback whales in the literature derived
from catch records, likely because the IWC prohibited the killing of lactating females accompanied by
calves. However, several studies have documented annual reproduction in female humpback whales in
the Northern Hemisphere [22,23,58,67,68]. For example, on the Hawaiian breeding grounds, Glockner-
Ferrari & Ferrari [23] observed that four of 34 females experienced an annual reproductive cycle and
one female was observed with different calves in four consecutive years. However, Glockner-Ferrari
and Ferrari focused primarily on approaching mothers with a calf, leading to a likely ascertainment
bias. Observations of annual calving are much lower on the feeding grounds. For example, Robbins [22]
calculated that only 2% of females returned with calves in consecutive years in the Gulf of Maine.

4.4. Are observed rates of pregnancy ‘too high’?
In 1966, the IWC prohibited the commercial takes of humpback whales; this protection has now been
in place for over 50 years [69]. At a global level, the recovery of humpback whale populations under
this protection has been very effective, as reflected by a recent decision to down-list the species to Least
Concern by the International Union for Conservation of Nature (2016), although a few populations in
the Northern Hemisphere remain in poor conservation status. It is reasonable to infer that the high
abundance of krill along the WAP [70] has supported the recovery of this feeding aggregation of
humpback whales. Unfortunately, it is not possible to reconstruct the demographic trajectory of these
whales over the last half-century because there is no good historical baseline for this population and we
have just recently been able to assess demographic parameters, such as pregnancy rates, in these whales.

We believe that the existence of annual reproduction in this population represents a response
to favourable ecological conditions, as humpback whales along the WAP recover from past over-
exploitation. The frequent occurrence of an annual reproductive cycle, together with a high mean
pregnancy rate of 63.5%, in female humpbacks suggests a population that is growing rapidly [23].
Indeed, the WAP feeding aggregation of humpbacks (and nearly all populations of this species) is
increasing [60,71]. However, our pregnancy rates are much higher than expected for a population that
is believed to be growing at a rate of only 3.4% per year [60]. Similarly high observations of annual
reproduction and overall pregnancy rates were made among humpbacks sampled of the Kermadec
Islands in Oceania [72]. The east Australian population of humpbacks is projected to be recovering at
or near the estimated physiological limit of the species (approx. 10% per year) [73,74]. The differences
between the high pregnancy rates we observed and the rather pedestrian rates of population growth
estimated for breeding stock G could reflect one or more of the following: the estimate of population
growth is biased low; pregnant females experience very high rates of perinatal loss, and or mortality
of the calves on the breeding grounds; or there is significant spatial heterogeneity with respect to
reproductive state on the foraging grounds.

The growth of a population depends not only on its reproductive rate, but on the survival and
recruitment of calves into the population [75]. It is possible that the occurrence of an annual pregnancy
cycle in this population results from the early mortality of a calf or late term fetus during the previous
cycle [63,75]. There are no data on fetal loss in this species, but calf mortality is known to occur after
birth but before arrival on the feeding grounds in some populations [76]. We believe that it is unlikely
that significant fetal loss is occurring in humpback whales along the WAP, because the population is
recovering from past depletion and because of a lack of other baleen whale populations having similarly
recovered, it is likely that there is no competition for resources (e.g. food is not limiting) and whales
can feed unrestricted. Resolution of this question will require more information on the reproductive
histories of individual females and, particularly, on the fate of their dependent calves. Our future work,
specifically genetic and photographic capture–recapture studies of mothers with calves, will focus on
addressing this knowledge gap.

We sampled whales opportunistically, avoiding re-sampling an individual when possible. However,
it is possible that the high rates of pregnancy we observed could be derived from some spatial artefact.
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Perhaps different demographic groups (e.g. lactating females, pregnant females) distribute themselves
unevenly within the feeding area. We believe that this possibility is unlikely due to the fact that these
animals range over very broad spatial scales during the feeding season [77]. However, future work is
required to address this possibility.

5. Conclusion
Our research demonstrates that this feeding aggregation of humpbacks exhibits high pregnancy rates and
a high proportion of females that are simultaneously pregnant and lactating. Both of these findings are
consistent with a rapidly growing population, but are not supported by current estimates of population
growth for the WAP population. Our work builds on the demographic and life-history data of Southern
Hemisphere humpbacks derived from whales killed during the last century and published 50 years ago.
Our intent here is to document the current demography of this population and establish a baseline with
which to assess the impact of future climatic trends. As the extent of winter sea ice continues to decline,
it is possible that we will witness a temporal shift and spatial expansion of the feeding grounds of these
whales, at least in the short term, and prey availability will likely increase [78–80]. Long-term trends
however, may be more problematic, due to the tight coupling of sea ice and the recruitment of krill in the
WAP ecosystem [81,82]. We have already witnessed responses in the demography of other baleen whales
to climate change [79,83]. We will continue to monitor this feeding aggregation of whales to document
its recovery and response to future environmental changes.
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